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INTRODUCTION 

During radial compression of a cylindrical liner at a velocity ~I0 3 m/sec, its motion 
differs from that computed by the equations of ideal fluid hydrodynamics. Agreement can be 
achieved within the limits of measurement error between experimental data and computation if 
the energy loss by deformation is taken into account [1]. As in this paper, the behavior of 
a liner fabricated from a homogeneous and isotropic material is considered in [I]. Its 
length is assumed constant and so large that edge effects can be neglected, and consider- 
ation limited to a ring of unit width. In such a formulation the problem of shell wall de- 
formation is equivalent to their uniaxial compression. 

The equation of radial axisymmetric motion of a thin liner subjected to external pres- 
sure p(t) has the form [1] 

p h ~  = N / R  - -  p, ( ~ )  

where N = ~h is the circumferential membrane force, ~ is the stress in the liner material, h 
'is the shell wall thickness, W = (Ro -- R) is their displacement, R is the radius of the middle 
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surface, Ro is its initial value, and p is the material density. Several versions of the 
solution of (I) are examined in [I] for different deformation models taking account of the 
dependence of the stress o on the magnitude of the strain u = W/Ro. It is shown that by 
formally varying the parameters in the dependence, agreement between computation and experi- 
ment is always achieved successfully. The parameters themselves do not remain constant for 
the different compression modes, which does not permit computation of liner motion prior to 
conducting the experiment. 

The magnitude of the stress and the work of the strain are found from the energy balance 
[2]. It was assumed that o remained constant during compression, llowever, even in this case 
it is not clear, first, whether utilization of the found value of the stress for other com- 
pression regimes is legitimate, and second, how exactly the computed curve will describe the 
true shell motion. 

The purpose of this paper is to confirm the possibility of computing the liner motion 
under the effect of a known external pressure pulse for different loading regimes. The growth 
of stress in the metal is here taken into account in both the elastic deformation stage, and 
its dependence on the magnitude of the strain and the loading rate in the plastic flow. It 
is assumed that o is not explicitly dependent on the strain rate. 

Formulation of the Problem 

It is known from the theory of strength of solids [3, 4] that a loss of strength sets in 
with a lag with respect to the time of pressure application for pulsed stresses in metals 
which even exceed significantly the static yield. This results in the fact that at high 
loading rates the yield can be increased several times. 

The time of the beginning of plastic deformation t~ and the corresponding value of the 
dynamic yield ~i during shell acceleration by a pulsed pressure of arbitrary shape can 
be determined from the condition of loss of strength by a solid. Several criteria [3, 5] are 
proposed that yield similarvalueof tl and oi. The assumption of cumulative deformation [3] 
is used in this paper: the metal goes over into the plastic state at the time tl for which 

t 1 

j" dt/t (~) = t. "2; 
o 

Here t(d) is the time of plastic flow development under the effect of an instantaneously 
applied constant stress ~ [3]: 

t (o)  = t(Oo)ex p [ - ( ~  - -  Oo)/moo] ' 3) 

where t(oo) is the maximum lag corresponding to ~ = do, the static yield point, and m is a 
constant characterizing the properties of the substance. It is assumed that the temperature 
of the metal is constant. 

This latter condition imposes no constraints on the process being studied. This is re- 
lated to the fact that, as will be shown later, the yield point is always reached in the ini- 
tial stage of the motion when shell heating can be neglected. 

The membrane force N beyond the yield point is detel~nined by the stress [6] 

~(u)  = o~ [k~/u~ - -  !c + i ]  ~/h. (4) 

Here ul = ~I/E is the strain corresponding to the time of reaching the dynamic yield point, 
k is a constant dependent on the properties of the substance, and E is the Young's modulus 
of the liner material. 

In combination with the equation of motion (l), the relationships (2)-(4) permit, 
in principle, the execution of a computation of liner motion under the effect of a known 
pressure pulse. However, the possibility of applying these equations in the case of shell 
compression is not clear since (2) and (3) were verified experimentally only for character- 
istic times t1~ 10 -4 sec and for a constant value of o [3], while the dependence (4) was 
verified for small strains u<~0.05 [6]. 

In an investigation of liner motion the external pressure, its growth rate, and the mag- 
nitude of the strain are substantially higher. In the case of electromagnetic liner acceler- 
ation p~ I0 s Pa, t~ ~ I0 -s sec, and u ~ 1 (compression to total collapse). The purpose of 
this paper was to show the possibility of applying the relationships mentioned to describe 
liner motion. 
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Experimental Study of Liner Motion. The diagram of the experimental apparatus is shown 
in Fig. I. A 5-kVcondenser battery of'0.0!3 F was discharged into a single-turn solenoid 1 
of width 4 cm. The starting inductance of the loop with the liner 2 was 35 nH. A magnetic 
field with amplitude to 25 T~ measured by the magnetic probe 3, was produced in the gap be- 
tween the liner and the solenoid. The minimal error in measuring the field with the error 
for probe calibration taken into account was 5%. A shell of the material AB-0 of 7.5-cm 
outer diameter and 3.5-cm height was used as liner. The initial liner wall thickness ho 
varied between 2 and 4 mm. 

In the experiments to study the initial stage of motion, the small shell strains were 
measured by using a coaxial capacitor whose plates were the liner itself and a rod 4 separ- 
ated by insulators 5 (vinyl chloride tubes of 1.5-mm diameter). The capacitor was connected 
through a separating capacitance to a segment of RK-75-4-II cable 10 m long with source 
follower input. Together with the cable, the capacitive sensor was charged from a stabilized 
supply source and disconnected from it directly before start-up. The voltage on the sensor 
was checked by a digital voltmeter with no worse than 0.2% accuracy. 

Evidently, the constant of the measuring capacitor loop should be much greater than the 
characteristic time of the process. The source follower had the input resistance 75 M~. In 
this case the accuracy of recording the linear displacement would be no worse than I0% for a 
22 T accelerating field amplitude for t = 2 ~sec. 

The liner radial displacements and the voltage change in the measuring capacitor AV/Vo 
are related by the dependence 

AV/Vo = W/[ i  + G(l - -  W/~o)/Co]~o, (5) 
where CI is the capacitance of the connecting cable, Co is the initial capacitance of the 
measuring condenser, and to is the initial magnitude of the gap. 

The error in signal magnitude caused by components of the measuring capacitor not being 
concentric is~0.56/ ~o (6 is the magnitude of the eccentricity). The system error did not 
exceed 5% for a selected ] mm gap and a measured eccentricity of 6 ~0.| mm. Results of 
computing the displacement of a liner with 2 mmwall thickness by means of the oscillograms 
obtained by using (5) are represented by curve 1 in Fig. 2. 

In the experiments to investigate liner motion during large strains, the recording of 
the inner boundary location was executed by using a SFR operating in the time magnifying 
mode with a 480,000 frames/sec film speed, The beginning of the process was determined to 
no worse than 2-~sec accuracy. The amplitudes of the instabilities being developed on the 
inner surface remained small for accelerating fields greater than 2] T, as cdmpared with the 
radius up to RI = 3 mm (RI is the radius of the shell inner boundary). A typical oscillogram 
of the field in the liner-solenoid gap is shown in Fig. 3 (curve I). The dependence R1(t) 
for this case is here represented by the cnrve 2 for ho = 2.5 ram. 

Computation of the Initial Stage of Liner Motion. Comparison with Experiment. Con- 
sidering initially that (2) and (3) are valid under conditions of experiments with liners, 
we estimate the possible magnitude of the dynamic yield point. For small radial displace- 
ments, (I) is converted to the form [6] 

d2u/d~ = pRo/(hoE) - -  ~ /E ,  (6 )  

w h e r e  T = c t / R o ,  c 2 = E / O .  I n  t h e  g e n e r a l  c a s e  t h e  l i n e r  m o t i o n  c a n  b e  c o m p u t e d  o n l y  b y  
n u m e r i c a l  m e t h o d s .  H o w e v e r ,  f o r  c e r t a i n  d e p e n d e n c e s  p ( T )  a n  a n a l y t i c a l  s o l u t i o n  o f  ( 6 )  i s  
s u c c e s s f u l l y  o b t a i n e d .  

L e t  u s  e x a m i n e  t h e  p r o c e s s  o f  s h e l l  c o m p r e s s i o n  u n d e r  t h e  e f f e c t  o f  a n  e x t e r n a l  p r e s s u r e  
p = p o ~ / T o  i n  t h e  e l a s t i c  s t r a i n  d o m a i n  (~ = E u ) .  T h e  s o l u t i o n  o f  ( 6 )  f o r  z e r o  i n i t i a l  c o n -  
d i t i o n s  h a s  t h e  f o r m  u = p o R o ( ~  --  s i n  T ) / ( h o T o E ) .  ~ o r  T2 < < 2 0  we o b t a i n  u ~ p o c 2 t 3 / ( 6 t o R o h o E )  
f r o m  t h i s  e q u a t i o n .  S u b s t i t u t i n g  t h e  v a l u e  a = Eu  = A t  3 i n  ( 3 ) ,  w h e r e  A = p o c = / 6 t o R o h o ,  we 
find its corresponding lag t(~) = t(~o) exp [(~o --At3)/(moo)]. According to (2) the time 
of the loss of strength in this case is determined from the condition 

J'y (t) at = J" dt = t 
0 0 

The integral of the rapidly growing function y(t) that reaches the highest value (but 
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not the maximum) y(tl) at one of the ends of the integration range can be estimated by set- 
ting it equal to y2(tl)/~(t,) [7]. It follows from the solution obtained in this manner for 
the equation for tl that the time to reach the dynamic yield point is determined by the ex- 
pression 

Here 

t 1 = {In 3 t (% )V , ,% l  1 + W J  " (7 )  

ot = At~ = m %  {in [3t (%)(A/mao) 1/8] 4- l / m } .  (8)  

The velocity at the time t~ reaches the quantity 

u(tl) = 3~1/(Etl) = 3uJt~ .  (9)  

R e s u l t s  o f  c a l c u l a t i n g  o l / o o  ( c u r v e  1 ) ,  t l  ( c u r v e  2 ) ,  and  u ( t l )  ( c u r v e  3) by  means o f  
( 7 ) - ( 9 )  a r e  r e p r e s e n t e d  i n  F i g .  4 f o r  an  a l u m i n u m  l i n e r  (oo = 8"107 P a ,  m = 0 . 0 4 3 ,  c = 5"10  ~ 
m / s e c ,  t ( o o )  = 4"10  s s e c  [ 3 ] )  w i t h  Ro = 5 cm, ho = 2 mm, and  po = 2 . 5 " 1 0  s P a .  

I t  i s  s e e n  t h a t  an i n c r e a s e  i n  t h e  r a t e  o f  p r e s s u r e  g r o w t h  ( r e d u c t i o n  i n  t o )  r e s u l t s  i n  
a d i m i n u t i o n  i n  t h e  t i m e  t l  d u r i n g  w h i c h  p l a s t i c  d e f o r m a t i o n  d e v e l o p s .  The q u a n t i t y  At~ 
t u r n e d  o u t  t o  b e  s u c h  t h a t  t h e  v a l u e  o f  o l  d e p e n d s  w e a k l y  on t h e  l o a d i n g  r a t e  i n  t h e  r a n g e  o f  
t o  v a r i a t i o n  b e t w e e n  10 - s  and  2"10  . 4  s e c  t h a t  i s  t y p i c a l  f o r  e x p e r i m e n t s  w i t h  l i n e r s .  

The i n i t i a l  s t a g e  o f  l i n e r  m o t i o n  i n  t h e  e x p e r i m e n t s  d e s c r i b e d  a b o v e  was a l s o  c o m p u t e d  
by  means  o f  ( 6 ) ,  w h i c h  was s o l v e d  n u m e r i c a l l y .  The p r e s s u r e  p ( T )  was e v a l u a t e d  f r o m  t h e  i n -  
s t a n t a n e o u s  v a l u e s  o f  t h e  m a g n e t i c  f i e l d  i n  t h e  l i n e r - s o l e n o i d  gap  f o r  e a c h  e x p e r i m e n t .  The 
i n s i g n i f i c a n t  f i e l d  d i f f u s i o n  i n  t h e  l i n e r  c a v i t y  was n e g l e c t e d .  

The stress oi = Eui and its corresponding value of t ifrom (3) were determined in the first 
stage of the computations in the elastic strain domain at each step of the integration, and 

i 

the sum ~At/t~(o), was evaluated, where At = ATRo/c, AT is the constant integration spacing. 
3=I 

The computation was halted as soon as the sum mentioned, that corresponds to the integral 
(2), reached a quantity close to one with a deviation to either side of not more than I0% 
within the limits of a spacing. 

1500 - 
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Starting with the time T~ = ctl/Ro, Eq. (6) was solved for o(u) determined from (4). 

The values of ul and u(tl) from the solution in the elastic strain domain were the initial 
conditions. The computed dependence of the displacement of the inner boundary of a liner 
with a 2 mm wall thickness is displayed by the curve 2 in Fig. 2. The point tl corresponds 
to the time the dynamic yield point reaches ~i = 2"10 8 Pa. The computed displacements turned 

out to be higher than the measured values for all values of the above-mentioned range of liner 
wall thicknesses; however, this difference is not outside the limits of experimental error. 

Curve 3 in Fig. 2 corresponds to the results of computations with the Prandtl rheologi- 
cal model [8] in which ~ = Eu is assumed for u~o/E and ~ = co = const for u > ~o/E. The 
difference between this curve and the experimental curve substantially exceeds the measure- 
ment error. The data obtained confirm the possibility of applying known methods of comput- 
ing the behavior of aluminum under conditions typical for electromagnetic acceleration of 
liners that are characterized by a loading rate to 2.10 13 Pa/sec with a front ~I0 -5 sec. 

Starting from the value of the dynamic yield point found above, theenergy loss by 
strain during compression of an aluminum liner can be computed. 

Computation of Liner Motion Under Large Deformation. Comparison with Experiment. The 
equation of axisymmetric strain of a shell layer has the form [9] 

+ r  Or/ P = - - T # / +  r ' 
% 

where  e r ,  o0 a r e  t h e  r a d i a l  and  t a n g e n t i a l  s t r e s s e s .  F o r  o 0 = ~ r  i t  d e s c r i b e s  i d e a l  f l u i d  
l i n e r  m o t i o n .  C o m p r e s s i o n  o f  a c y l i n d e r  f rom e l a s t i c - - p l a s t i c  m a t e r i a l  i s  a c c o m p a n i e d  by 
e n e r g y  a c c u m u l a t i o n  d u r i n g  e l a s t i c  s t r a i n  and  l o s s  d u r i n g  p l a s t i c .  I n  t h i s  c a s e  t h e  c o n d i -  
t i o n  ~0 - a r  = e > 0 s h o u l d  e v i d e n t l y  be s a t i s f i e d .  We assume t he  s t r e s s  e ,  w h i c h  g o v e r n s  
t h e  m a g n i t u d e  o f  t h e  e n e r g y  e x p e n d i t u r e  i n  l i n e r  d e f o r m a t i o n ,  e q u a l s  Eu u n d e r  e l a s t i c  com- 
p r e s s i o n  and  may be  f o u n d  f rom t h e  r e l a t i o n s h i p  (4) w i t h  u = [ R I ( 0 )  -- R 1 ] / R I ( 0 )  b e y o n d  t h e  
y i e l d  p o i n t  ( R I ( 0 )  i s  t h e  i n i t i a l  v a l u e  o f  R1) .  

T a k i n g  a c c o u n t  o f  t h e  i n c o m p r e s s i b i l i t y  o f  t h e  s u b s t a n c e  (p = c o n s t  and  ~ i s  c o n s t a n t  
o v e r  t h e  l i n e r  s e c t i o n )  i n  i n t e g r a t i n g  t h e  e q u a t i o n  o f  m o t i o n  o f  a t h i n  l a y e r  w i t h  r e s p e c t  t o  
r b e t w e e n  R1 and  R i ,  we o b t a i n  

o ]2 
R1 = pRq (So + 0 + So~R1) in 0 + So/RD" (10) 

Here p2 i s  t h e  p r e s s u r e  on t h e  c y l i n d e r  o u t e r  b o u n d a r y ,  p~ t h e  p r e s s u r e  on t h e  i n n e r  b o u n d a r y ,  
So = R 2 2 2(0) -- RI(0), Ri(0) is the initial value of the outer shell radius Ri. At the time t = 
0 we have RI(0) = Ro -- ho/2 and RI(0) = 0. In deriving (I0) we assumed a constant over the 
liner section at any time. The maximal difference in the magnitude of the stress ~ occurs on 
the shell boundaries during complete collapse. Using (4) it can be shown that for ho/Ro = 
0.05 and k = 16.5 [6], at this time ~(R=)/o(R~) = [I -- #So/R~(0)] = 0.02. To such accuracy 
is a(r) = const taken over the section. 

The validity of the assumptions made above can be verified by comparing experimental 
results with the computation of liner motion by means of (I0). 

This equation was solved numerically. The time of the passage into the plastic state is 
found exactly as in computations to determine the dynamical yield point. The computations 
were executed for different dependences ~(u): I) o = 0; 2) ~ = Eu in the elastic strain 

~ p  

i 

" f~O 
I 

0,s 

L 
o,4 

Fig. 5 

0y8 ~. 

240 



TABLE l 

Computation by equation of motion (10) 

l k(o).to - s  Qo.to -5 ! a ,  c m  

m/sec ' J/m I 

: (C~ i~ :Y 

a ,  cm Ro/14 

20 

0,25 0,66 3,4 1,00 3,0 i,O0 
0,50 2,65 t ,2 1,00 t ,0 i ,00 
0,75 5,96 0 0,63 0 0,74 
t,00 t0,6 0 0,35 0 ' 0,42 
i,25 i6,6 0 0,23 0 0,27 
i,50 23,8 0 0,10 0 0,i8 

40 

0,25 0,33 3,6 t,00 3,2 1,00 
0,50 t,32 t,4 l,O0 l , l  1,00 
0,75 3,0 0 0,81 0 0,90 
i,O0 5,3 0 0,46 0 0,50 
t,25 8,3 0 0,29 0 0,32 
1,50 i i ,9  0 0,20 0 0,22 

60 

0,25 0,22 3,65 t,00 3,2 i,O0 
0,50 0,88 !,5 t,00 1,2 1,00 
0,75 2,0 0 0,90 0 0,99 
l,O0 3,5 . 0 0,5i 0 0,55 
t,25 5,5 0 0,33 0 0,35 
i,50 8,0 0 0,23 0 0,25 

domain and o = oo[ku/ul -- k + l] I/k outside the yield point; 3) o = oi; 4) o = Eu for u ~ oi/ 
E and o = o1[ku/ul -- k + I] I/k for u > o~/E. 

The instantaneous value of the pressure p2(t) was determined, as before, by means of 
oscillograms of the magnetic field in the liner--solenoid gap for each experiment, and pl was 
taken at zero. Results of calculations for the induction of the accelerating field are 
represented in Fig. 3 by curves 3-6, respectively. It follows from a comparison of experi- 
mental and computational data that the solution of (10) with o(u) determined by condition 
(4) (curve 6), describes the liner motion most accurately. 

Using the relationship (2)-(4), (10) the motion pattern of a shell subjected to external 
motion can be obtained. It is seen from the behavior of the dependence o(u) constructed 
according to (4) that the main shell strain occurs (for u > 0.2) for o varying weakly accor- 
ding to a linear law in practice (curve 1 in Fig. 5). The dependence 7 in Fig. 3 corresponds 
to a computation of inner boundary motion with o = ].55oi(I + 0.1u) (curve 2 in Fig. 5). 
Comparing the curve 7 with experiment shows that the solution of (I0) with the simplified 
dependence o(d) describes shell compression satisfactorily. 

Taking this into account, a n expression can be obtained for estimates of the strain 
energy loss just as is dene in [2]. For a liner whose inner boundary R~(0) is compressed to 
RI, they are per unit length 

2 
0 = - 0.75~i l!, i [R~ (0) in ((s0 + RI)/(R2 (0)) -- ( i I) 

-- R~ (0)In R~/R~ (0) -- (R~ (0) -- R~) In ((S O -k R~)/R~)] + 0.2 [R~ (0) • 

• Fs0 + Ri- RI (0) R~ - (R~ (0) - n~) i~ ((R~ (0) + V~0 + R~)/(R~ (0) + R~))]I. 

Upon total collapse of the shell (R, § 0) with initial energy Qo = ~9SoR~(0)/2, the relative 
magnitude of the loss equals (Ro ~ho) 

= O/Qo= 1.7Ol (i  + in (Ro/2ho))/[gh ~ (0)]. (I  2) 

For a liner moving by inertia (p2 = P~ = 0) at the initial rate RI(0), n can be deter- 
mined from the results of computations using (I0) by setting n = (Qo - QI)/Qo, where QI is 
the kinetic energy of the shell at the time under consideration. 

Presented in the table are data of computations in the range of the initial velocities 

R(0) = (0.25-1.5)'10 -9 m/sec with Ro/ho = 20, 40, 60 for Ro = 5 cm for p2 = pl = 0. If it 
followed from the computation that the liner should be halted at the finite radius a, then 
is taken equal to I. Given in the same table are estimates of the half radius a and the mag- 
nitudes of the energy losses ~ determined from (II) and (12). The ratio of the energy loss 
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by strain and the initial kinetic energy of the liner is independent of Ro but is governed 
by the ratio Ro/ho, the value of the initial compression rate R(0), and the magnitude of the 
dynamic yield point. Estimates executed by means of (11) and (12) are in good agreement with 
the computation results according to the equation of motion. 

In conclusion, we note the following. 

i. Comparison of the results of calculations with the experiments conducted confirms 
the feasibility of using relationships (2), (3), and (4) for the determination of the charac- 
teristics of motion of a liner and the computation of energy loss by deformation. 

2. The magnitude of the dynamic limit point of aluminum, in experiments with liners 
under conditions typical for electromagnetic acceleration, was a constant and uniform 
2.108 Pa, 

3, The energy loss by deformation, determined according to expression (12), in the 
interval Ro/ho = 20-60 for R(0) = (0.2521.5).103 m/sec, coincides well with the estimate 
from the solution of equation (I0). 
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RESIDUAL STRESSES AND VISCOSITY IN THE HIGH-SPEED 

DEFORMATION OF METALS 

N. N. Sergeev-Al'bov UDC 539.376 

By formulating a numerical experiment, the residual stresses occurring in the surface 
layer of a metal after the passage of a pressure pulse are studied in this paper. Their 
magnitude as a function of the magnitude and rate of traversal of the acting pressure pulse 
is studied. The stressed behavior of the metal is described by Maxwell equations of a linear 
viscoelastic medium []]. Taking account of plastic phenomena occurs in this model because of 
the introduction of a nonlinear dependence of the relaxation time on the tangential stress 
intensity. 

To describe metal behavior under high-speed strain, a viscous incompressible fluid model 
is often used. Within the framework of this model, the viscosity of metals during collisions 
in the explosive welding mode is investigated in [2]. Here the model equation utilized in 
[2] and the Maxwell model are compared in an example of numerica~ results. 
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